Leukemia inhibitory factor receptor signaling negatively modulates nerve growth factor-induced neurite outgrowth in PC12 cells and sympathetic neurons.
نویسندگان
چکیده
Nerve growth factor (NGF) is required for the development of sympathetic neurons and subsets of sensory neurons. Our current knowledge on the molecular mechanisms underlying the biological functions of NGF is in part based on the studies with PC12 rat pheochromocytoma cells, which differentiate into sympathetic neuron-like cells upon NGF treatment. Here we report that the expression of leukemia inhibitory factor receptor (LIFR), one of the signaling molecules shared by several neuropoietic cytokines of the interleukin-6 family, is specifically up-regulated in PC12 cells following treatment with NGF. Attenuation of LIFR signaling through stable transfection of antisense- or dominant negative-LIFR constructs enhances NGF-induced neurite extension in PC12 cells. On the contrary, overexpression of LIFR retards the growth of neurites. More importantly, whereas NGF-induced Rac1 activity is enhanced in antisense-LIFR and dominant negative-LIFR expressing PC12 cells, it is reduced in LIFR expressing PC12 cells. Following combined treatment with NGF and ciliary neurotrophic factor, sympathetic neurons exhibit attenuated neurite growth and branching. On the other hand, in sympathetic neurons lacking LIFR, neurite growth and branching is enhanced when compared with wild type controls. Taken together, our findings demonstrate that LIFR expression can be specifically induced by NGF and, besides its known function in cell survival and phenotype development, activated LIFR signaling can exert negative regulatory effects on neurite extension and branching of sympathetic neurons.
منابع مشابه
Leukemia inhibitory factor receptor signaling negatively modulates NGF-induced neurite outgrowth in PC12 cells and sympathetic neurons
* These authors contributed equally to this work Correspondence should be addressed to: Prof. Nancy Y. Ip, Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. Phone: 852-2358-7304 Fax: 852-2358-2765 E-mail:[email protected] Running title: LIFR signaling inhibits neurite outgrowth
متن کاملThe death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling
Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with n...
متن کاملInhibition of Nerve Growth Factor-Induced Neurite Outgrowth from PC12 Cells by Dexamethasone: Signaling Pathways through the Glucocorticoid Receptor and Phosphorylated Akt and ERK1/2
Glucocorticoids are important mediators of the stress response and are commonly employed as drugs for the suppression of immune rejection after organ transplantation. Previous investigations uncovered the possibility of mood depression in patients undergoing long-term treatment with synthetic glucocorticoids, including dexamethasone (DEX). Exogenous glucocorticoids and their synthetic derivativ...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملThe Adaptor Protein SH2B3 (Lnk) Negatively Regulates Neurite Outgrowth of PC12 Cells and Cortical Neurons
SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 40 شماره
صفحات -
تاریخ انتشار 2003